Category Archives: beams

Types of beams – Top beam types explained

Types of beams popularly used In construction and engineering are classified based on their shape, the way they are supported, their structural behaviour etc. The beam is a horizontal or sloping structural member that supports a load and resists bending.In construction, beams are essential components that support loads and provide structural stability. This article explores the types of beams used in various applications, focusing on types of beam in building construction.We’ll cover what are the 4 types of beams, which are widely used in both residential and commercial projects. Additionally, we’ll discuss types of beams and support systems to understand how these beams interact with other structural elements. We’ll also examine different types of beams and their specific characteristics, along with popular beam types in modern construction. By the end, you’ll have a clear understanding of various type beams and their practical uses.

Beams are typically made from materials such as wood, steel, or concrete. They support floors, roofs, and walls. They also bridge gaps between supports. The type of beam used depends on factors such as the load to be supported, the span length, and the structural design of the building or structure. Beams can come in a variety of shapes, including rectangular, square, circular, and I-shaped. Proper selection and installation of beams are critical for ensuring the stability, safety, and durability of a structure.

This article is about the different types of beams popularly used in civil engineering and construction.

  1. Classification of beam types
    1. Types of beams based on the shape
      1. Rectangular beam
      2. Square beam
      3. Circular beam
      4. I-shaped (H-beam)
      5. T-shaped beam
      6. L-shaped beam
  2. Types of beams based on support conditions
    1. Simply supported beams
    2. Fixed beams
    3. Cantilever beams
    4. Continuous beams
    5. Overhanging beam
  3. Types of beams based on structural behaviour
  4. Types of beams based on materials used
    1. Timber beam
    2. Steel beam
    3. Concrete beam
    4. Composite beam
  5. Key Takeaways
  6. Conclusion

Classification of beam types

Types of Beams can be classified based on several factors, including their shape, the way they are supported, and their structural behaviour. Here are some common classifications of beams.

Beams are vital components in construction, and understanding the different types of beams is essential for choosing the right structure. So, what are the 4 types of beams? Beams can be categorized in various ways. Beam types based on shape include rectangular, I-beams, and T-beams. Type beams are also defined by their support conditions, such as simply supported and cantilever beams. What are the 4 types of beams based on structural behavior? These include flexural, axial, shear, and torsional beams. Additionally, the types of beams in building construction are often selected by material, including concrete, steel, and wood beams. Understanding the types of beams and support ensures optimal performance in construction.

Related posts from vincivilworld

  • Types of beams Based on the shape

Beams can be classified as rectangular, square, circular, I-shaped (also known as H-beam), T-shaped, and L-shaped.

  • Types of beams Based on support conditions

Beams can be classified as simply supported, fixed, cantilever, continuous, and overhanging.

  • Types of beams Based on structural behaviour

Beams can be classified as determinate or indeterminate. Determinate beams have a fixed number of supports and can be analysed using statics. Indeterminate beams have more supports than are needed for stability and require more advanced analysis techniques to determine their behaviour.

  • Types of beams Based on the material

Beams can also be classified based on the material used, such as wood, steel, or concrete.

The choice of beam type depends on the load to be supported, the span length, and the structural design of the building or structure.

Types of beams based on the shape

Beams can be classified based on their shape, which refers to the cross-sectional profile of the beam. The shape of the beam affects its structural properties, such as its strength, stiffness, and weight. Here are some common shapes of beams.

Rectangular beam

A rectangular beam is a type of beam that has a rectangular cross-section. It is a simple and commonly used beam in construction due to its ease of fabrication and ability to support both bending and compression loads. Rectangular beams are typically made from materials such as wood, steel, or concrete.

Square beam

A square beam is a type of beam that has a square cross-section. It is commonly used in applications where a symmetric load is expected, and it provides uniform support in all directions. Square beams are typically made from materials such as wood, steel, or aluminium and are used in construction, manufacturing, and other engineering applications.

Circular beam

A circular beam is a type of beam that has a circular cross-section. It is commonly used in applications where torsion is a concern, such as in helicopter blades and wind turbines. Circular beams provide strength and stability in all directions and are typically made from materials such as steel, aluminium, or composite materials.

I-shaped (H-beam)

An I-shaped beam, also known as an H-beam, is a type of beam that has an I-shaped cross-section. It is commonly used in construction because of its high strength-to-weight ratio and ability to support large loads. I-shaped beams are typically made from steel. They are used in a variety of applications, such as bridges, buildings, and other infrastructure.

T-shaped beam

A T-shaped beam is a type of beam that has a T-shaped cross-section. It is commonly used as a lintel or in other load-bearing applications where a shallow beam is needed. T-shaped beams provide structural support in one direction. They are typically made from materials such as steel, wood, or reinforced concrete.

L-shaped beam

An L-shaped beam is a type of beam that has an L-shaped cross-section. It is commonly used as a bracket or in other applications where load-bearing support is needed. L-shaped beams provide structural support in two directions and are typically made from materials such as steel, wood, or reinforced concrete.

The choice of beam shape depends on the load to be supported, the span length, and the structural design of the building or structure.

Types of beams based on support conditions

Beams can also be classified based on their support conditions, which refers to how the beam is held in place. Here are some common support conditions for beams:

Simply supported beams

A simply supported beam is a type of beam that is supported at both ends and is free to rotate. It is one of the most common support conditions for beams and is used in a wide range of applications, such as bridges, buildings, and other infrastructure. Simply supported beams are typically used to support lighter loads and have a simple design.

Simply supported beam types
Simply supported Beam
Simply Supported beam

Fixed beams

A fixed beam is a type of beam that is rigidly fixed at both ends and cannot rotate. This support condition results in a beam that is capable of supporting heavier loads than a simply supported beam. Fixed beams are commonly used in construction. This includes the construction of tall buildings or other structures that require a high level of load-bearing capacity. However, the design of fixed beams is more complex than simply supported beams. This complexity arises due to the structural constraints imposed by the fixed supports.

Types of beams - Fixed beams
Types of beams – Fixed beams

Cantilever beams

A cantilever beam is a type of beam that is supported at one end and is free to rotate at the other end. It is commonly used in applications where an overhanging structure is required, such as in balconies or bridges. Cantilever beams are capable of supporting relatively heavy loads. They have a unique design that requires careful consideration of the forces acting on the beam.

Beams types - Cantilever beam
Beams types – Cantilever beam

Continuous beams

A continuous beam is a type of beam supported by more than two supports. It has one or more internal supports. This support condition results in a beam that is capable of supporting heavier loads. It can support more than a simply supported beam or cantilever beam. Continuous beams are commonly used in construction. They are used in the construction of bridges or multi-story buildings. Careful consideration of the distribution of loads and internal support points is required.

Types of beams - Continuous beam
Beam types - Continuous beams
Beam types : Continuous Beams

Overhanging beam

An overhanging beam is a type of beam that extends beyond its supports and has one or more overhanging sections. This support condition results in a beam that is capable of supporting loads that are not symmetrical or evenly distributed. Overhanging beams are commonly used in construction. They are often used in the construction of balconies or awnings. These beams require careful consideration of the distribution of loads. This includes the structural design of the overhanging section.

The choice of support condition depends on the load to be supported, the span length, and the structural design of the building or structure. Different support conditions result in different load-bearing capabilities and structural behaviour for the beam, which must be taken into account during the design process.

Types of beams based on structural behaviour

Beams can be classified as determinate or indeterminate. Determinate beams have a fixed number of supports and can be analyzed using statics. Indeterminate beams have more supports than are needed for stability and require more advanced analysis techniques to determine their behaviour.

Types of beams based on materials used

Beams can also be classified based on the materials used in their construction. Here are some common classifications based on materials:

Timber beam

A timber beam is a type of beam that is made from wood. Timber beams are commonly used in residential and light commercial construction due to their relatively low cost, ease of construction, and natural aesthetic appeal. However, their strength and durability can be limited compared to other materials, which must be taken into account during design.

Timber beam
Timber Beam
Timber beams

Steel beam

A steel beam is a structural element made of steel that is used to support loads over a span. It is typically I-shaped or H-shaped and comes in various sizes and lengths. Steel beams are commonly used in construction projects such as bridges, buildings, and infrastructure due to their strength and durability.

steel beams
Steel beams
Steel beam

Concrete beam

A concrete beam is a structural element made of reinforced concrete that is used to support loads over a span. It is typically rectangular or T-shaped and comes in various sizes and lengths. Concrete beams are commonly used in construction projects such as buildings, bridges, and infrastructure due to their strength and durability.

Concrete beam
Concrete Beam
Concrete beam

Composite beam

A composite beam is a structural element made of a combination of different materials, typically steel and concrete, that work together to support loads over a span. The steel and concrete are bonded together to create a strong, durable beam that can be used in construction projects such as buildings, bridges, and infrastructure.

The choice of material depends on the load to be supported, span length, and other design requirements. Each type of beam has unique structural properties that must be taken into account during the design process to ensure that the beam can support the intended loads.

Key Takeaways

  • Beam Types in Construction: Beams are classified based on their shape, support conditions, structural behavior, and material.
  • Shape-Based Beam Types: Rectangular, square, circular, I-shaped, T-shaped, and L-shaped beams are used depending on load requirements and structural design.
  • Support Conditions: Beams can be simply supported, fixed, cantilever, continuous, or overhanging, each offering different load-bearing capabilities.
  • Structural Behavior: Beams are categorized as determinate or indeterminate, influencing how they are analyzed in design.
  • Material-Based Beam Types: Common materials include timber, steel, concrete, and composite materials, each with unique properties for different applications.
  • Beam Selection: Factors like load, span length, and structural stability influence the choice of beam types in building construction.

Conclusion

Beams are fundamental components in construction, supporting loads and providing structural stability. They can be categorized based on shape, support conditions, material, and behavior. Each type is designed to meet specific structural demands. Rectangular and I-shaped beams are commonly used in buildings and bridges. Cantilever beams are perfect for overhanging structures. The correct selection of beam types is essential to ensure safety, durability, and performance in any construction project. Understanding the various beam types helps in designing more efficient and stable structures.

What is a Plinth beam? Plinth beam height and size

What is a plinth beam in construction? Plinth beams are horizontal structural elements that are built at the plinth level. It is the first beam built after the foundation has been completed. Furthermore, the plinth beam is an important component in a building because it serves as a foundation for brickwork as well as a moisture barrier, preventing moisture from entering the superstructure walls. The height of the plinth beam is typically 200mm to 450mm. It can be both reinforced and unreinforced.

The most important components of a building are the substructure and superstructure. The substructure is the part of the building that is below ground level, while the superstructure is the part of the building that is above ground level. The plinth level separates the substructure from the superstructure. The plinth beam follows the foundation’s construction. This article discusses what a plinth beam is, as well as plinth level, plinth beam size, and plinth beam height.

  1. What is a plinth?
  2. What is a plinth beam?
  3. Plinth beam in construction – Functions and advantages
  4. Size of plinth beam
  5. Plinth beam reinforcement
  6. Plinth beam construction

What is a plinth?

The plinth is the structural stratum that separates the superstructure and substructure of a building. All structures must have a ground floor that is 45 to 60 centimetres higher than the surrounding ground. This will prevent rainwater, dirt, and dust from entering the building. Because of this, the outer dimensions of a pedestal constructed first are slightly larger than those of the ground floor. That is referred to as the Plinth. A level or base known as a plinth is used to support superstructure walls, columns, and other structures. The plinth’s function is to distribute pressure and load evenly across a surface.

Related posts from vincivilworld

What is a plinth beam?

A plinth beam, as the name implies, is a beam at the plinth level. It is a particular kind of beam that is situated at the bottom of a framed structure. Because it holds the columns in place, it is also referred to as a Tie Beam. A horizontal structural component that joins the columns at the plinth level of the building is called a plinth beam. It is constructed above the top of the plinth level in load-bearing walls to aid in uniform load distribution and building settlement. Plinth beams reduce the length and slenderness ratio of a column. These beams are installed to prevent foundation cracks from spreading into the structure.

The plinth beam is located at 1.5 to 2 ft above Ground Level
Plinth Beam

Plinth beams are installed to stop cracks from the foundation from spreading into the wall above when the foundation settles. Plinth beams distribute the load of the wall evenly over the foundation.

Plinth beam in construction – Functions and advantages

Following are the functions and advantages of plinth beams

  • To prevent the development of cracks from the foundation to the walls
  • For distributing loads uniformly from columns to the foundations via superstructure.
  • Prevention of differential settlement
  • To prevent the entry of dampness in the structure. 
  • For avoiding the collapse of building due to earthquakes. It is crucial to provide plinth beams in earthquake-prone areas.
  • For providing support for walls
  • To reduce the effective length of columns. 
  • Prevention of column buckling
  • To withstand lateral forces. 
  • It saves buildings by preventing differential settlement which is caused by the partial failure of substructure or by the failure of soil on which buildings are constructed.
  • It provides uniformity to buildings at the plinth level.
  • The best application of a plinth beam is to withstand outside actions such as water, tree roots, and termites which could affect the life of the plinth.

Size of plinth beam

The plinth beams are designed in accordance with IS 132920-2016. According to the IS Code, the minimum width of the plinth beam cannot be less than 250mm. The depth should be not more than 1/4 of the clear span and not less than 200mm depth. In addition, the span to overall depth should be between 15 and 18. The concrete strength of the plinth beams shall not be less than 200Mpa.

Plinth Beam
Plinth beam

Plinth beam reinforcement

At the bottom of the beam, two bars with a minimum diameter of 12mm are recommended. Similarly, two bars with a minimum diameter of 10mm must be provided at the top of the plinth beams. A 25mm concrete cover should be used to protect reinforcement bars. The stirrup diameter should be at least 6mm, with a 15cm spacing.

Plinth beam construction

1) Determining the mark-up width First, the plinth level is marked. Plinth beams are usually half the width of the foundation. The skeleton is prepared after marking the width of the plinth. The beam reinforcement must then be completed prior to shuttering.

2) Formwork Installation The next step is to put up formwork. Steel, wood, or plastic must be used for formwork. By levelling the ground, you can fix the formwork properly.

3) Concrete pouring Before pouring concrete, make sure the shuttering is dry and all the joints are tight.

4) Pouring of the concrete

Before pouring concrete, ensure the shuttering is dry and all the joints are tight. Pour the concrete evenly. 

5) Curing of the Concrete

After the concrete is dried, It is cured for at least 7 to 14 days for attaining good strength and durability

5) Removal of Formwork

After curing Once the concrete is set, remove the formwork.