Tag Archives: L beam

Types of beams – Top beam types explained

Types of beams popularly used In construction and engineering are classified based on their shape, the way they are supported, their structural behaviour etc. The beam is a horizontal or sloping structural member that supports a load and resists bending. Beams are typically made from materials such as wood, steel, or concrete, and are used to support floors, roofs, and walls, as well as to bridge gaps between supports. The type of beam used depends on factors such as the load to be supported, the span length, and the structural design of the building or structure. Beams can come in a variety of shapes, including rectangular, square, circular, and I-shaped. Proper selection and installation of beams are critical for ensuring the stability, safety, and durability of a structure.

This article is about the different types of beams popularly used in civil engineering and construction.

  1. Classification of beam types
    1. Types of beams Based on the shape
    2. Types of beams Based on support conditions
    3. Types of beams Based on structural behaviour
    4. Types of beams Based on the material
  2. Types of beams based on the shape
    1. Rectangular beam
    2. Square beam
    3. Circular beam
    4. I-shaped (H-beam)
    5. T-shaped beam
    6. L-shaped beam
  3. Types of beams based on support conditions
    1. Simply supported beams
    2. Fixed beams
    3. Cantilever beams
    4. Continuous beams
    5. Overhanging beam
  4. Types of beams based on structural behaviour
  5. Types of beams based on materials used
    1. Timber beam
    2. Steel beam
    3. Concrete beam
    4. Composite beam

Classification of beam types

Types of Beams can be classified based on several factors, including their shape, the way they are supported, and their structural behaviour. Here are some common classifications of beams:

Related posts from vincivilworld

Types of beams Based on the shape

Beams can be classified as rectangular, square, circular, I-shaped (also known as H-beam), T-shaped, and L-shaped.

Types of beams Based on support conditions

Beams can be classified as simply supported, fixed, cantilever, continuous, and overhanging.

Types of beams Based on structural behaviour

Beams can be classified as determinate or indeterminate. Determinate beams have a fixed number of supports and can be analysed using statics. Indeterminate beams have more supports than are needed for stability and require more advanced analysis techniques to determine their behaviour.

Types of beams Based on the material

Beams can also be classified based on the material used, such as wood, steel, or concrete.

The choice of beam type depends on the load to be supported, the span length, and the structural design of the building or structure.

Types of beams based on the shape

Beams can be classified based on their shape, which refers to the cross-sectional profile of the beam. The shape of the beam affects its structural properties, such as its strength, stiffness, and weight. Here are some common shapes of beams.

Rectangular beam

A rectangular beam is a type of beam that has a rectangular cross-section. It is a simple and commonly used beam in construction due to its ease of fabrication and ability to support both bending and compression loads. Rectangular beams are typically made from materials such as wood, steel, or concrete.

Square beam

A square beam is a type of beam that has a square cross-section. It is commonly used in applications where a symmetric load is expected, and it provides uniform support in all directions. Square beams are typically made from materials such as wood, steel, or aluminium and are used in construction, manufacturing, and other engineering applications.

Circular beam

A circular beam is a type of beam that has a circular cross-section. It is commonly used in applications where torsion is a concern, such as in helicopter blades and wind turbines. Circular beams provide strength and stability in all directions and are typically made from materials such as steel, aluminium, or composite materials.

I-shaped (H-beam)

An I-shaped beam, also known as an H-beam, is a type of beam that has an I-shaped cross-section. It is commonly used in construction because of its high strength-to-weight ratio and ability to support large loads. I-shaped beams are typically made from steel. They are used in a variety of applications, such as bridges, buildings, and other infrastructure.

T-shaped beam

A T-shaped beam is a type of beam that has a T-shaped cross-section. It is commonly used as a lintel or in other load-bearing applications where a shallow beam is needed. T-shaped beams provide structural support in one direction. They are typically made from materials such as steel, wood, or reinforced concrete.

L-shaped beam

An L-shaped beam is a type of beam that has an L-shaped cross-section. It is commonly used as a bracket or in other applications where load-bearing support is needed. L-shaped beams provide structural support in two directions and are typically made from materials such as steel, wood, or reinforced concrete.

The choice of beam shape depends on the load to be supported, the span length, and the structural design of the building or structure.

Types of beams based on support conditions

Beams can also be classified based on their support conditions, which refers to how the beam is held in place. Here are some common support conditions for beams:

Simply supported beams

A simply supported beam is a type of beam that is supported at both ends and is free to rotate. It is one of the most common support conditions for beams and is used in a wide range of applications, such as bridges, buildings, and other infrastructure. Simply supported beams are typically used to support lighter loads and have a simple design.

Simply supported beam types

Fixed beams

A fixed beam is a type of beam that is rigidly fixed at both ends and cannot rotate. This support condition results in a beam that is capable of supporting heavier loads than a simply supported beam. Fixed beams are commonly used in construction, such as in the construction of tall buildings or other structures that require a high level of load-bearing capacity. However, the design of fixed beams is more complex than simply supported beams due to the structural constraints imposed by the fixed supports.

Types of beams - Fixed beam

Cantilever beams

A cantilever beam is a type of beam that is supported at one end and is free to rotate at the other end. It is commonly used in applications where an overhanging structure is required, such as in balconies or bridges. Cantilever beams are capable of supporting relatively heavy loads and have a unique design that requires careful consideration of the forces acting on the beam.

Types of beams - Cantilever beam

Continuous beams

A continuous beam is a type of beam that is supported by more than two supports and has one or more internal supports. This support condition results in a beam that is capable of supporting heavier loads than a simply supported beam or cantilever beam. Continuous beams are commonly used in construction, such as in the construction of bridges or multi-story buildings, and require careful consideration of the distribution of loads and internal support points.

Types of beams - Continuous beam

Overhanging beam

An overhanging beam is a type of beam that extends beyond its supports and has one or more overhanging sections. This support condition results in a beam that is capable of supporting loads that are not symmetrical or evenly distributed. Overhanging beams are commonly used in construction, such as in the construction of balconies or awnings, and require careful consideration of the distribution of loads and the structural design of the overhanging section.

The choice of support condition depends on the load to be supported, the span length, and the structural design of the building or structure. Different support conditions result in different load-bearing capabilities and structural behaviour for the beam, which must be taken into account during the design process.

Types of beams based on structural behaviour

Beams can be classified as determinate or indeterminate. Determinate beams have a fixed number of supports and can be analyzed using statics. Indeterminate beams have more supports than are needed for stability and require more advanced analysis techniques to determine their behaviour.

Types of beams based on materials used

Beams can also be classified based on the materials used in their construction. Here are some common classifications based on materials:

Timber beam

A timber beam is a type of beam that is made from wood. Timber beams are commonly used in residential and light commercial construction due to their relatively low cost, ease of construction, and natural aesthetic appeal. However, their strength and durability can be limited compared to other materials, which must be taken into account during design.

Timber beam

Steel beam

A steel beam is a structural element made of steel that is used to support loads over a span. It is typically I-shaped or H-shaped and comes in various sizes and lengths. Steel beams are commonly used in construction projects such as bridges, buildings, and infrastructure due to their strength and durability.

steel beams

Concrete beam

A concrete beam is a structural element made of reinforced concrete that is used to support loads over a span. It is typically rectangular or T-shaped and comes in various sizes and lengths. Concrete beams are commonly used in construction projects such as buildings, bridges, and infrastructure due to their strength and durability.

Concrete beam

Composite beam

A composite beam is a structural element made of a combination of different materials, typically steel and concrete, that work together to support loads over a span. The steel and concrete are bonded together to create a strong, durable beam that can be used in construction projects such as buildings, bridges, and infrastructure.

The choice of material depends on the load to be supported, span length, and other design requirements. Each type of beam has unique structural properties that must be taken into account during the design process to ensure that the beam can support the intended loads.