Category Archives: Building materials

The category talks about various building materials. They are, Stones, bricks, cement and lime. Stone is a naturally available building material that has been used for construction from the early age of civilization. Brick, the next in the category of building materials is obtained by molding good clay into a block, which is dried and then burnt. Lime is one of the oldest binding materials used in building construction. When it is mixed with sand it provides lime mortar and when mixed with sand and coarse aggregate, it forms lime concrete. Field test of Cement is one of the most important activity to be done at site to ensure the quality of construction. Every structure comprises of hundreds of building materials like sand, cement, aggregates, bricks, tiles, marble, etc. For creating a quality structure, building material quality plays an important role and needs to be checked frequently at different stages of construction. Normally lab tests are conducted to ascertain the properties of cement. Lab tests require time, special types of equipment, and professionals for testing and interpreting the results. It may not be possible to check all the properties of cement at the site. To overcome this difficulty cement tests are categorised into two. The quality of cement can be confirmed with the help of some simple field tests. These tests do not require any sophisticated types of equipment and professional skills and get the results very quickly. By conducting these simple tests and analysing the results we will get an idea about the cement quality and can immediately decide on accepting or rejecting it. These are first look tests and quality of cement is ensured by its smoothness to touch, the colour of cement, etc.

Bitumen types for road Layers – Bitumen Emulsion types

Bitumen types for road layers are a vital topic to comprehend when it comes to road construction. Bitumen is preferred for flexible pavements in road construction because it has many advantages over other pavement construction materials. This article will demonstrate the importance of bitumen in road construction and the types of bitumen for road construction. Furthermore, bitumen emulsion types for road layers, different bituminous materials, cutback bitumen, bitumen grade, and bitumen attributes will be highlighted in this article.

  1. Bitumen types for Road layers /Flexible pavements 
    1. Tack Coat – Bitumen types for road layers
    2. Binder Course – Bitumen types for road layers
    3. Prime Coat – Bitumen types for road layers
    4. Base Course
    5. Sub Base Course
    6. Sub Grade
  2. Protective Asphalt
    1. Seal coat
    2. Slurry Seal
    3. Chip Seal
    4. Micro Surfacing
    5. Fog Seal

Bitumen types for Road layers /Flexible pavements 

The   flexible  pavement  structure   consists  of  the  following  layers: 

  • Tack   Coat  
  • Binder   Course 
  • Prime  Coat  
  • Base   Course  
  • Subbase Course
  • Subgrade Course
Bitumen types for road layers

Keep in mind that the primary component of the road is not protective asphalt. Protective asphalt is deployed to safeguard the road’s surface. Every layer mentioned above uses a different type of bitumen. We will illustrate what types of bitumen are used in each of these layers.

Tack Coat – Bitumen types for road layers

The application of coatings is a critical phase in the construction of asphalt roadways. Generally, a tack coat is a thin layer of asphalt emulsion or liquid bitumen used in between layers of hot mix asphalt to prevent slippage. Mostly, MC30 cutback bitumen, CRS-1, and CRS-2 emulsion bitumen are utilised in a tack coat layer of bitumen. The lower layer is sealed by the presence of a tack coat, which also increases the strength of both asphalt layers.

Bitumen types for road Layers

MC-30 is a medium-curing cutback bitumen that is ideal for cold climates. Basically, asphalt emulsions are the most often used tack coat materials. However, the most widely used slow-setting emulsions are SS-1, SS-1h, CSS-1, and CSS-1h (1). The usage of rapid-setting asphalt emulsions like RS-1, RS-2, CRS-1, and CRS-2 for tack coats is also on the rise.

Related posts from vincivilworld

Binder Course – Bitumen types for road layers

The base course and the surface course are separated by the binder course. Generally, a binder course is used to keep the road surface from moving. Because the binder course is made out of coarse aggregates, less bitumen is utilised in the manufacture of this asphalt. In the hot asphalt of the binder course, various grades of pure bitumen can be utilised. The various grades of pure bitumen used in binder courses are listed in the table below.

Penetration Grade Viscosity Grade
30/40VG 10
40/50VG 20
60/70VG 30
80/100VG 40 
120/150
Bitumen types for road layers

Prime Coat – Bitumen types for road layers

A prime coat is a coating that is applied directly to the base layer. The primary objective of utilising the prime coat is to improve the bond between the base layer and the asphalt mix layer. It also fills in the voids. A priming coat might aid in sealing the base layer. The bitumen in prime coatings is either CSS or CMS.

Prime coats aid in reducing dust while protecting the granular base’s integrity throughout construction. In the event of a foundation that will be covered with a thin hot mix layer or a chip seal for a low-volume roadway, priming enables a good bond between the seal and the underlying surface, which might otherwise delaminate.

A primary coat is primarily responsible for safeguarding the substrate of a construction project before applying additional layers. They can also function as a binder with secondary and tertiary compounds in the preparation of asphalt, improving the adherence of the layers. Following the prime coat, a tack coat is applied to provide an adhesive bond between the tack coat and the subsequent layer of coating. For asphalt prime coat systems, the tack coat is one of the most vital parts of the process, as it connects the subsequent layers and forms the base of those layers’ strength.

Base Course

The base course is placed directly on top of the subbase course. This layer has a higher permeability than the sub-base layer because it is composed primarily of coarse aggregates. Basically, the base course, which is the first layer in direct contact with traffic, moves the weights from the upper layers to the sub-base course. Different base courses used in pavement include sand or stone base, macadam base, and bitumen base.

road-layers-of-flexible-pavement
road-layers-of-flexible-pavement

Sub Base Course

The first layer of flexible pavement constructed on the ground is the sub-base course. This layer is typically composed of river sand, an alluvial cone, and broken rock. Bitumen and cement can be used to stabilise the sub-base soil.

Sub Grade

It is the surface upon which further pavement layers such as the sub-base course, base course, and asphalt layers are placed. The subgrade absorbs any load tension or weight that is transferred from the top levels. A good subgrade should be able to support weights for a considerable amount of time without deforming.

Protective Asphalt

Generally, Protective asphalts are used to seal the road surface and improve the asphalt temporarily. However, It should be noted that asphalt sealing can cause the asphalt to become more slippery. Pure bitumen with low humidity and soluble bitumen are both utilised in protective asphalt. Because of its quickness and ease of installation, protective asphalt is more cost-effective than hot asphalt. There are various varieties of protective asphalts, some of which are listed below:

  • Seal coat
  • Slurry seal
  • Chip seal
  • Micro-surfacing
  • Fog seal

Seal coat

A seal coat is used to provide a long-lasting surface texture and to keep the surface waterproof. However, this kind of protective asphalt can be made using a variety of emulsion bitumen types, including CSS-1, SS-1h, SS-l, and CSS-1h.

Bitumen types for road layers

Slurry Seal

Generally, a slurry seal is used to lessen the harm done by bitumen oxidation. In the slurry seal, emulsion bitumens SS-1, SS-h1, CSS-1h, and CQS-1h are used. A slurry seal is appropriate for pavements with little to moderate damage, such as narrow cracks. However, it is not appropriate for severe damage such as holes.

Chip Seal

A chip seal is a thin protective surface that is applied to a pavement or subgrade. Water cannot easily seep through the base layer due to the chip seal. This layer also prevents freezing in areas where the temperature is below zero. Adding this layer improves the road’s reflectiveness for nighttime driving. A rapid-setting emulsion containing a CRS-2, RS-2, HFRS-2, and PMB is the best type of bitumen for chip sealing.

Micro Surfacing

Micro-surfacing aids in the sealing of cracks and the protection of existing bituminous layers against surface voids and minor ruts. Among the benefits of adopting this layer are environmental compatibility, cost-effectiveness, and fast construction time. PMB bitumens such as PMCQS-1h, PMQS-1h, and CQS-1P are suited for it.

Fog Seal

A fog seal is intended to neutralise the oxidation process that occurs over time. This layer protects the pavement surface by leaving a hard layer. This layer employs emulsion bitumen such as SS-1, SS-1h, CSS-1, or CSS-1h.

Types of bonds in brick masonry walls – Advantages and features

Types of bonds in brick masonry commonly used in construction are detailed in this article. The process of bonding bricks with mortar in between them is known as brick masonry. Bricks are arranged in a pattern to maintain their aesthetic appearance and strength. This article is about the various types of bonds in brick masonry walls.

Bricks are rectangular construction materials. Bricks are commonly used in the construction of walls, paving, and other structures. They are also inexpensive and simple to work with.

  1. Types of Brick masonry bonds – Features
  2. Types of Bonds in brick masonry
    1. Stretcher bond – Types of Bonds in brick masonry
      1. Limitations of Stretcher bonds
      2. Applications of stretcher bonds
    2. Header bond – Type of Bonds in brick masonry
    3. English Bond – Types of bonds in brick masonry
    4. Flemish Bond
    5. Double flemish bond
    6. Single Flemish Bond
    7. Raking bond
    8. Zigzag Bond
    9. Facing Brick Bonds
    10. Dutch Bond
    11. Rat trap bond

Types of Brick masonry bonds – Features

For all types of brick masonry bonds to be stable and of high quality, the following characteristics must be followed.

  • Bricks should be uniform in size.
  • The lap should be a minimum of 1/4 brick along the length of the wall and 1/2 brick across the thickness of the wall.
  • Uniform lapping is to be maintained.
  • Avoid using too many brickbats.
  • For getting a uniform lap Length of the brick should be twice its width plus one joint.
  • The centre line of the header and stretcher in the alternate courses should coincide with each other for the stable wall.
  • Stretchers should be used in facing and a header should be used in hearing.

Types of Bonds in brick masonry

There are different types of brick masonry bonds. They are

  • Stretcher Bond
  • Header Bond
  • English Bond
  • Flemish Bond
  • Raking bond
  • Zigzag Bond
  • Herring-Bone Bond
  • Facing Bond
  • Dutch Bond
  • Diagonal Bond
  • Rattrap bond

Let us have a look at the most commonly used types of bonds in brick masonry.

Stretcher bond – Types of Bonds in brick masonry

The stretcher is the brick’s lengthwise face or otherwise known as the brick’s longer, narrower face, as shown in the elevation below. Bricks are laid so that only their stretchers are visible, and they overlap halfway with the courses of bricks above and below. Accordingly, In this type of brick bond, we lay the bricks parallel to the longitudinal direction of the wall. In other words, bricks are laid as stretchers in this manner. It is also referred to as a walking bond or a running bond. Additionally, it is among the simplest and easiest brick bonds.

Stretcher Bond - Types of bonds in brick masonry
Stretcher-Bond

Limitations of Stretcher bonds

  • Stretcher bonds with adjacent bricks, but they cannot be used to effectively bond with them in full-width thick brick walls.
  • They are only suitable for one-half brick-thick walls, such as the construction of a half-brick-thick partition wall.
  • Stretcher bond walls are not stable enough to stand alone over longer spans and heights.
  • Stretcher bonds require supporting structures such as brick masonry columns at regular intervals.

Applications of stretcher bonds

Stretcher bonds are commonly used as the outer facing in steel or reinforced concrete-framed structures. These are also used as the outer facing of cavity walls. Other common applications for such walls include boundary walls and garden walls

Header bond – Type of Bonds in brick masonry

Generally for header bond, the header is the brick’s widthwise face. In brick masonry, a header bond is a type of bond in which bricks are laid as headers on the faces. It’s also referred to as the Heading bond. The header is the brick’s shorter square face, measuring 9cm x 9cm. As a result, no skilled labour is required for the header bond’s construction. While stretcher bond is used for half brick thickness walls, header bond is used for full brick thickness walls that measure 18cm. Generally, in the case of header bonds, the overlap is kept equal to half the width of the brick. To achieve this, three-quarter brickbats are used in alternate courses as quoins.

header bond - Types of bonds in brick masonry
header bond

English Bond – Types of bonds in brick masonry

English bond uses alternative courses of stretcher and headers and is the most commonly used and the strongest bond in brick masonry. However, a quoin closer is used at the beginning and end of a wall after the first header to break the continuity of vertical joints. Mostly, a quoin close is a brick that has been cut lengthwise into two halves and is used at corners in brick walls. Similarly, each alternate header is centrally supported over a stretcher.

Types of bonds in brick masonry - English bond

Flemish Bond

In Flemish bond, each course is a combination of header and stretcher. Accordingly, the header is supported centrally over the stretcher below it. Generally,closers are placed in alternate courses next to the quoin header to break vertical joints in successive layers. Flemish bond, also known as Dutch bond, is made by laying alternate headers and stretchers in a single course. The thickness of Flemish bond is minimum one full brick.The drawback of using Flemish bond is that it requires more skill to properly lay because all vertical mortar joints must be aligned vertically for best results. Closers are placed in alternate courses next to the quoin header to break vertical joints in successive There are two types of Flemish bond

  • Double Flemish bond
  • Single Flemish bond

Double flemish bond

The double flemish bond has the same appearance on both the front and back faces. As a result, this feature gives a better appearance than the English bond for all wall thicknesses.

Single Flemish Bond

The English bond serves as the backing for a single flemish bond, which also includes a double flemish bond on its facing. As a result, both the English and Flemish bonds’ strengths are utilised by the bond. Similarly ,this bond can be used to build walls up to one and a half brick thick. Howerver,high-quality, expensive bricks are used for the double-flemish bond facing. Cheap bricks in turn may be used for backing and hearting.

The appearance of the Flemish bond is good compared to the English bond.  Hencer, flemish bond can be used for a more aesthetically pleasing appearance. However, If the walls must be plastered, English bond is the best choice.

Flemish bond

Raking bond

Raking bond is a type of brick bond in which the bricks are laid at angles. In this case, bricks are placed at an inclination to the direction of walls. Generally, it is commonly applicable for thick walls. Normally laid between two stretcher courses. There are two types of Raking bonds

raking bond
  • Diagonal bonds
  • Herringbone bonds

Diagonal bonds

In diagonal bonds, bricks are laid inclined, the angle of inclination should be in such a way that there is a minimum breaking of bricks. These dioganal bonds are mostly applicable for walls of two to four brick thickness. Similarly, the triangular-shaped bricks are used at the corners. 

Herringbone bonds

This type of bond is applicable in thick walls. The bricks are laid at an angle of 45 degrees from the centre in two directions. Mostly used in paving. 

Zigzag Bond

In this type of bond, bricks are laid in a zig-zag manner. It is similar to the herringbone bond. Since Zig zag bond has an aesthetic appearance it is used in ornamental panels in brick flooring. 

zig zag bond
zig zag bond

Facing Brick Bonds

In facing bond bricks are used of different thicknesses. It has an alternative course of stretcher and header. The load distribution is not uniform in this type of bonding. So it is not suitable for the construction of masonry walls.

facing bond
facing bond

Dutch Bond

It is a type of English bond. The specific pattern of laying bricks for building a wall is known as English and Dutch bonds. The primary distinction is that English Bond is a bond used in brickwork that consists of alternate courses of stretchers and headers. Dutch bond – made by alternating headers and stretchers in a single course.

Rat trap bond

rat trap bond
rat trap bond

Another name of the rat trap bond is the Chinese bond. In this type of bond, the bricks are placed in such a way that a void is formed between them. These voids act as thermal insulators. Thus provides good thermal efficiency. It also reduces the number of bricks and the amount of mortar. Construction of rat trap bonds requires skilled labours.

Test of cement on site – Field tests of Cement

Test of cement on site or field tests of cement is one of the most crucial things to be performed to assure the quality of the construction. Every structure is made up of hundreds of different building materials, such as sand, cement, aggregates, bricks, tiles, marble, and so on. However, the quality of the building materials is crucial for producing a high-quality structure and should be regularly evaluated at various phases of construction. Cement is the most important material used in construction and is responsible for the overall strength of the structure. In order to guarantee excellence in building, cement quality must be properly.

This article is about the various test of cement on-site or field tests of cement to ensure quality.

  1. Test of cement on site – Significance
  2. How to check cement quality?
  3. Test of cement on site / Field tests of cement
    1. Checking the manufacturing date of cement
    2. Visual checking for Lumps for the test of cement on site.
    3. Feel test of cement on site
    4. Heat of cement
    5. Colour
    6. Water float test
    7. Setting test
    8. Conclusion

Test of cement on site – Significance

Cement plants are generally found in isolated areas near limestone mines. Generally, clinker is produced by cement companies at a centralised clinkerization plant. Clinkers are either ground at the clinkerization facility or transported to strategically placed grinding units for grinding and cement bag packing. The manufactured and packed cement is transported and delivered to the prescribed destinations by road or rail. Even with the finest protection, the cement still has the potential of absorbing moisture while being transported. After absorbing moisture, the cement tends to harden, deteriorating its quality. Because of these unforeseen concerns, cement must be tested for quality before being used in construction. Basically, cement testing is carried out in accredited laboratories.

How to check cement quality?

The characteristics of cement are often determined by laboratory tests. Lab tests need time, specialised equipment, and expertise to evaluate and interpret the data. All of the cement’s qualities might not be able to be tested on-site. To address this issue, cement tests are divided into two types.

  • Field Tests of Cement

This article is about the field tests of cement.

test of cement on site
FIELD TEST OF CEMENT

Related posts from vincivilworld

Test of cement on site / Field tests of cement

Some simple field tests can be used to confirm the quality of cement. Generally, these tests do not require the use of costly equipment or professional skills, and the results are obtained quickly. We can determine whether to accept or reject the cement by doing these quick tests, analysing the findings, and drawing conclusions about its quality. These are preliminary evaluations, and the cement’s quality is confirmed by factors such as how smooth it feels to the touch and its colour etc.

  • Checking the manufacturing date of cement
  • Visual checking for lumps
  • Feel test of cement
  • The heat of cement test
  • Colour test of cement
  • Water float tests
  • Setting tests
Test of cement on site
Field tests of cement

Checking the manufacturing date of cement

When stored under perfect conditions, the cement must be utilised within 90 days of manufacture. The manufacturing date and batch number are imprinted on each cement bag. By verifying the manufacturing date, we can get a good indication of how old the cement is and decide whether to use it. In addition, every batch of cement is accompanied by a Manufacturers Test Certificate, which can be requested and examined to verify the dates of manufacture.

Visual checking for Lumps for the test of cement on site.

Cement can be inspected for visible lumps. To establish the potential existence of lumps, you can press the cement bag’s corners. This test determines if the cement has hardened or not.

Feel test of cement on site

Feel a pinch of cement between the figures. Cement has to feel smooth and not grainy. By this test, we can rule out the presence of any adulterated material like sand mixed with cement.

Heat of cement

Put your hand inside a bag of cement that is open. If the cement is of good quality and has not yet begun to hydrate, the hand feels cool.

Colour

Cement is usually greenish-grey in colour. We can verify and confirm the colour of the cement on-site. However, the type and source of the ingredients can affect the colour of the cement.

Water float test

This test is performed to find out whether there are impurities in cement. A cement hand is thrown into a bucket of water. The cement floats for a while before settling down if it is good cement free of impurities or other foreign objects. Impurities in the water can cause the cement to settle instantly.

Setting test

A thick paste of cement is applied to a glass piece and slowly immersed in water for 24 hours. The cement piece won’t break or alter shape while it sets and maintains its original shape. This cement is regarded as excellent.

Conclusion

We have the opportunity to contact cement manufacturers through their customer services if we have any questions about the product’s quality and they will be happy to help. It is possible to confirm field observations with laboratory tests. Cement quality should never be compromised during construction. Because the most crucial component that affects the durability and quality of a structure is cement.

ALSO READ : WHAT ARE THE PROPERTIES OF CEMENT?

Advertisements

Refractory Bricks – Properties and Types

Refractory bricks, also known as firebrick are ceramic materials used to line furnaces, kilns, fireboxes, and fireplaces. A refractory brick is designed to withstand high temperatures while still having poor thermal conductivity for increased energy efficiency. Refractory bricks are used in place of regular bricks, which always have a tendency to shatter at high temperatures. These bricks may also go by the titles ceramic bricks or fire bricks. Brick is one of the most popular construction materials used since ancient times. Regular bricks tend to crack at high temperatures and are not preferred for high-temperature areas. In such conditions, conventional bricks are often replaced by Refractory bricks.

This article is about refractory brick, their types, and their properties.

  1. What are refractory bricks?
  2. Properties of Refractory brick
  3. Types of Refractory bricks
    1. Acid refractory bricks
    2. Basic refractory bricks
    3. Neutral refractory bricks

What are refractory bricks?

Refractory brick is a type of brick that can resist high temperatures. It is also known as ceramic bricks or fire bricks. Generally, they are yellowish-white in colour. These bricks have good thermal resistance and good compressive strength. The chemical composition of fire bricks differs from regular bricks’ chemical composition. It mainly consists of 25 to 30% alumina, and 60 to 70% silica. Also, oxides of magnesium, calcium, potassium etc are present. The main application of fire bricks is in the construction of kilns, furnaces, etc. They are able to withstand temperatures above 2100 degrees Celsius. Thus the thermal capacity helps the structure to be stable at high temperatures. 

refractory-bricks
refractory-bricks

Related and trending posts from vincivilworld

Properties of Refractory brick

Following are the properties of Refractory brick.

  • Refractory brick should resist high temperatures.
  • They have good compressive strength. 
  • The weight of fire bricks is 150 lbs per cubic ft. 
  • The size of refractory brick is 9×4.5×2.5 inches or 9×2.7×2.25 inches. 
  • They also have good chemical resistance, Since they do not react with the furnace gases. 
  • The water absorption of refractory brick is 5 to 10%. 
  • They have a high fusion point. 
refractory-brick
refractory-brick

Types of Refractory bricks

Refractory bricks are available in various sizes and shapes. There mainly three types of refractory brick

  • Acid refractory bricks
  • Basic refractory Bricks
  • Neutral refractory Bricks

Acid refractory bricks

The acid refractory brick includes silica bricks and ganister bricks. Silica brick consists of 93% of Silicon dioxide. They possess good strength and fusion points. Also, they are hard and it is suitable for acid lining in furnaces. They can withstand temperatures up to 2000 degrees Celsius. Silica bricks are made from sandstone or quartzite. Ganister bricks consist of 85% of silica, 10% clay and 2% of lime. They are also hard and can withstand temperatures up to 2100 degrees Celsius. But acid bricks are not suitable to undergo rapid temperature. Since they tend to spall. 

Basic refractory bricks

Basic refractory bricks are basic in nature. They have good corrosion resistance and chemical resistance. They consist of Magnesite bricks, dolomite bricks and Bauxite bricks. Magnesite bricks contain 85% of magnesium oxide and 3 to 5% of iron oxide. They are suitable for the lining of the furnace. They can withstand temperatures up to 1800 to 2100 degrees Celsius. Dolomite bricks can withstand temperatures up to 1400 to 1600 degrees Celsius. It contains a high amount of dolomite. Bauxite bricks are a type of basic refractories that can withstand temperatures up to 1600 degrees Celsius and contains 85% of bauxite. 

Neutral refractory bricks

Neutral refractory bricks are suitable in places to separate the acid and basic lining in the furnace. They consist of chromite bricks, carborundum, spinal bricks and forsterite bricks. These bricks have a high percentage of chrome and magnesite. 

Los Angeles abrasion Test on Aggregates

Los Angeles Abrasion test is used to determine aggregates’ level of abrasion resistance and toughness. Los Angeles abrasion test of aggregate assesses the deterioration of aggregate standard gradings when subjected to abrasion and impact in a rotating steel drum containing an abrasive charge of steel balls. LA abrasion test on aggregates is the measure of aggregate toughness and abrasion resistance such as crushing, degradation and disintegration. Basically, finding the percentage wear as a result of relative rubbing between the aggregate and steel balls used as an abrasive charge is the primary objective of the Los Angeles abrasion test.

  1. Significance of Los Angeles Abrasion Test of aggregates
  2. Types of aggregate tests
  3. Los Angeles Abrasion tests on aggregates
    1. Codes and standards for Los Angeles Abrasion test of aggregates
    2. Working principle of LA Abrasion test
    3. The test procedure for the Los Angeles Abrasion test of aggregate
    4. The formula for LA Abrasion Test

Significance of Los Angeles Abrasion Test of aggregates

Aggregate is a fundamental and necessary component of concrete, flexible pavements, and other similar structures. More than 70% to 80% of the volume of concrete is aggregate. Quality matters when it comes to aggregates because they are the main component of concrete, flexible pavements, etc. Various tests are conducted to determine the following properties of Aggregates.

  • Strength
  • Toughness
  • Hardness
  • Shape
  • Water Absorption etc.

Related posts from Vincivilworld

Types of aggregate tests

The following are the various aggregate tests used to determine aggregate suitability:

This article is about Los Angeles Abrasion tests on aggregates

Los Angeles Abrasion tests on aggregates

The aggregate toughness and abrasion resistance such as crushing, degradation, and disintegration are evaluated by the Los Angeles abrasion test. Generally, this test is performed in accordance with AASHTO T 96 or ASTM C 131.

The Los Angeles Abrasion test determines the aggregate’s wearing resistance and hardness. Abrasion is indeed the wearing action on aggregate caused by vehicle movement. In order to resist abrasion, the aggregate should have an adequate abrasion value. The abrasion test value can ensure the quality and suitability of aggregates. Furthermore, aggregate with high abrasion resistance has a long life span.

Codes and standards for Los Angeles Abrasion test of aggregates

There are 3 tests commonly used to test aggregates for their abrasion resistance. (a) Deval Attrition Test (b) Dorry Abrasion Test (c) Los Angeles Abrasion Tests. However, Los Angeles abrasion test values are more realistic and correct.

Los angeles Abrasion testing apparatus
Los Angeles Abrasion Testing Apparatus

Working principle of LA Abrasion test

The principle of this test is to produce abrasive action using steel balls mixed with aggregates. Accordingly, the aggregate and steel balls are rotated in a drum for a specific number of rotations. The percentage of wear due to relative rubbing action between the aggregate and steel balls is recorded. This value is the Los Angeles Abrasion value.

Los Angeles Machine cross section
Los Angeles abrasion testing machine

The test procedure for the Los Angeles Abrasion test of aggregate

The Los Angeles abrasion testing machine consists of a hollow steel cylinder, closed at both ends, having an inside diameter of 700 mm and an inside length of 500 mm. The abrasive charge shall consist of cast iron spheres or steel spheres approximately 48 mm in. diameter and each weighing between 390 and 445 g. The number of balls to be placed shall be as per IS 2386.

Grading and number of abrasive charges
Grading and number of abrasive charges

The test sample shall consist of clean aggregate which has been dried in an oven at 105 to 110°C to substantially constant weight. They shall conform to one of the gradings shown in Table II.

GRADINGS OF TEST SAMPLES AS PER IS 2386PLES
GRADINGS OF TEST SAMPLES AS PER IS 2386
  • Firstly, place the specimen inside the horizontal drum.
  • Then, put the steel balls and rotate the cylinder for a total of 500-1000 revolutions at the speed of 30-33 rpm about its horizontal axis. For gradings A, B, C and D, the machine shall be rotated for 500 revolutions. However, for gradings E, F and G, it shall be rotated for 1000 revolutions.
  • After completing the specific rotations, collect the specimens from the cylinder.  
  • Then sieve on a 1.7 mm IS sieve and weigh the specimen.
  • Lastly, calculate the abrasion value using the formula below.

The formula for LA Abrasion Test

The original weight of aggregate sample = W1 g

Weight of aggregate sample retained = W2 g

Weight passing 1.7mm IS sieve = W– Wg

Abrasion value = [(weight of sample taken – weight of sample retained on IS sieve) / weight of sample taken ] x 100

The difference between the original weight and the final weight (sieved through 1.7mm) is expressed as % of the original weight of the sample aggregate. Similarly, this value is called as Los Angeles abrasion value.

Physical Properties of Cement – Significance and impacts

The physical properties of cement have a significant impact on a structure’s serviceability, strength, and durability. The most important and highly recognized structural material used in construction is cement. All types of construction, from large skyscrapers, bridges, and tunnels to modest residential structures, use cement. It stands out as a crucial component of industrial buildings such as power plants, refineries, steel plants, cement mills, bridges, and other infrastructure.

Cement, when mixed with sand and aggregates, forms concrete, and when mixed with sand, it forms mortar. The serviceability, strength, and durability of a structure are entirely dependent on the quality of cement used for concrete and mortar; similarly, the properties of cement are directly related to the Cement Manufacturing Process, which involves the proportioning of ingredients, grinding, packing, and storing, among other things.

The cement properties are classified into PHYSICAL PROPERTIES and CHEMICAL PROPERTIES

  1. Physical Properties of Cement
    1. The fineness of cement – Physical properties of cement
    2. The soundness of cement – Physical Properties of Cement
      1. Causes of Unsoundness of cement
    3. Consistency of cement
    4. Strength of cement
    5. Setting time of cement
    6. Hydration of cement – The most important Physical Properties of Cement

Physical Properties of Cement

The physical properties of cement are critical in ensuring cement quality. Let us explore the physical properties of cement in depth. Physical properties distinguish different cement blends used in construction. Some critical parameters influence cement quality. Good cement has the following physical properties and is based on the following factors.

  • Fineness of Cement
  • Soundness of cement
  • Consistency of cement
  • Strength of cement
  • Setting time of Cement
  • Hydration reaction of cement

The fineness of cement – Physical properties of cement

The Fineness of cement is the measure of the particles of cement or the specific surface area of cement. The hydration rate of cement is directly related to its fineness. The higher the fineness of cement higher the specific surface area available per unit volume of cement. ie More area is available for cement and water action (hydration). This increases the rate of hydration and early gaining of strength in concrete. Bleeding can also be reduced by an increase in the fineness of the cement. But this in turn leads to dry shrinkage which can be managed by using more water.

Fineness can be determined by using a sieve analysis test, air permeability test or a sedimentation method.

The soundness of cement – Physical Properties of Cement

Soundness refers to the ability of hardened cement paste not to shrink or expand and retains its volume. If there is any change in volume, cracks may develop and the cement can be distinguished as unsound cement. Unsound cement can affect the durability and life of the structure. Soundness can also be defined as the volume stability of cement.

The cement manufacturing quality also has a very serious impact on cement quality. Inadequate heating can leave excess lime in cement. Even though cement plants have full-fledged quality labs to check the ingredients in detail, still cement has to be checked for its soundness before being used for any structure. Le Chatelier apparatus is used to test the soundness of cement.

Causes of Unsoundness of cement

The soundness of cement is affected by the presence of excess lime and magnesia. The excess lime hydrates very slowly to form slaked lime and will affect the properties of cement. The hydration difference between free lime (CaO) and slaked lime can change the volume of concrete on hardening and these changes make cement unsound.

Excess magnesia also reacts with water and affects the hydration process making cement unsound.

Gypsum is added to control the setting time of cement. Excess gypsum can react with Tricalcium aluminate to form calcium sulphoaluminate which can expand the concrete while hardening. The addition of gypsum has to be done with utmost care or else can make the cement unsound.

Consistency of cement

The consistency of cement is the ability of cement-water paste to flow under normal conditions. The optimum water-cement ratio has to be maintained in dry mixes to make it workable. Consistency of cement is the measure of the optimum water-cement ratio of a cement paste which can allow a Vicat apparatus plunger to penetrate a depth of 5-7 mm measured from the bottom of the mould. In that case, we can consider the paste is at normal consistency. The optimum water percentage for normal consistency ranges from 26% – 33%. The standard consistency test is conducted using a Vicat apparatus.

Physical properties of Cement - Finishing concrete

Strength of cement

Cement is the material responsible for imparting strength to mortar and concrete. The cement hydrates react with water and induce strength in concrete. The strength of cement has to be checked before it can be used for work. The strength can be affected by a lot of factors like water-to-cement ratio, ingredient proportioning, curing conditions, age, etc. The cement has to be checked for compressive, tensile, and flexural strength. The strengths are measured as grades in the cement bags

The strength is determined by checking the compressive strength of the cement.

Setting time of cement

The setting time of cement starts from the point water is added to the cement to a point where the cement reacts with water and hardening of the paste. It is the time taken from the production stage to the hardening stage which involves activities like, mixing, conveying, placing, and hardening. The setting time depends on a lot of factors like the fineness of cement, water-cement ratio, chemical content, and the presence of admixtures, etc. The setting time has to be adjusted in line with the structural requirements but has to ensure that the initial settling time should not be too low and the final setting time should not be too high.

The initial setting time is when the mix starts to stiffen and attains its plasticity. The initial setting time is 30 minutes for cement.

The final setting time is when the cement hardens to a point where it can take loads. The final setting time is 10 hours.

Hydration of cement – The most important Physical Properties of Cement

For using cement in any construction work, it is necessary to mix cement with water. On mixing water with the cement, a chemical reaction happens between water and cement leading to heat generation. This process of heat generation is known as the heat of hydration. It is very critical in mass concrete work and works done in hot and humid conditions.

When water is added to cement, a chemical reaction takes place between cement and water and is called hydration. Hydration generates heat, which can control the quality of the cement and helps in maintaining curing temperature in cold conditions. While using in mass concrete the heat generation tends to be very high which can cause undesired stresses in the structure. The heat of hydration is affected mostly by the presence of C3S and C3A in cement, water-cement ratio, fineness, and curing temperature. The heat of hydration of Portland cement is calculated by determining the difference between the dry and the partially hydrated cement.

Physical properties of cement